Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading.
نویسندگان
چکیده
The influence of aging on skeletal myocyte apoptosis is not well understood. In this study we examined apoptosis and apoptotic regulatory factor responses to muscle atrophy induced via limb unloading following loading-induced hypertrophy. Muscle hypertrophy was induced by attaching a weight to one wing of young and aged Japanese quails for 14 days. Removing the weight for 7 or 14 days after the initial 14 days of loading induced muscle atrophy. The contralateral wing served as the intra-animal control. A time-released bromodeoxyuridine (BrdU) pellet was implanted subcutaneously with wing weighting to identify activated satellite cells/muscle precursor cells throughout the experimental period. Bcl-2 mRNA and protein levels decreased after 7 days of unloading, but they were unchanged after 14 days of unloading in young muscles. Bcl-2 protein level but not mRNA level decreased after 7 days of unloading in muscles of aged birds. Seven days of unloading increased the mRNA level of Bax in muscles from both young and aged birds. Fourteen days of unloading increased mRNA and protein levels of Bcl-2, decreased protein levels of Bax, and decreased nuclear apoptosis-inducing factor (AIF) protein level in muscles of aged birds. BrdU-positive nuclei were found in all unloaded muscles from both age groups, but the number of BrdU-positive nuclei relative to the total nuclei decreased after 14 days of unloading compared with 7 days of unloading. The TdT-mediated dUTP nick end labeling (TUNEL) index was higher after 7 days of unloading in both young and aged muscles and after 14 days of unloading in aged muscles. Immunofluorescent staining revealed that almost all of the TUNEL-positive nuclei were also BrdU immunopositive, suggesting that activated satellite cell nuclei (both fused and nonfused) underwent nuclear apoptosis during unloading. There were significant correlations among levels of Bcl-2, Bax, and AIF and TUNEL index. Our data are consistent with the hypothesis that apoptosis regulates, at least in part, unloading-induced muscle atrophy and loss of activated satellite cell nuclei in previously loaded muscles. Moreover, these data suggest that aging influences the apoptotic responses to prolonged unloading following hypertrophy in skeletal myocytes.
منابع مشابه
Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy.
Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle. Although IL-15 has proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is less clear. The purpose of this study was to determine if skeletal muscle aging and unloading, two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal muscle. We...
متن کاملIsolation and optimization of mice skeletal muscle satellite cells using preplating method and culture media substitution
Introduction: Satellite cells are known as the main regenerative cell type in skeletal muscles. Our study established a modified digestion and preplating method for the isolation of slow or weak adherent cells for the enrichment of satellite cells. Low-survival rate of these primary stem cells prompted us to address whether cell culture medium substitution might change cell viability status. M...
متن کاملIn Vivo Rodent Models of Skeletal Muscle Adaptation to Decreased Use.
Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, disease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atrophic respon...
متن کاملResponses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملSkeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 288 2 شماره
صفحات -
تاریخ انتشار 2005